目前大模型能力仍处于EmergingAGI水平,就模型成熟度而言,语言大模型>多模态大模型>具身智能大模型。根据DeepMind的定义,AGI应能够广泛学习、执行复杂多步骤的任务。模型的AGI水平可分为Level-0至Level-5共6个等级,现阶段大模型在处理任务的广泛性上还有很大提升空间,即使是国际顶尖的大模型也仍处于Level-1EmergingAGI阶段。不同类型大模型成熟度差异较大,目前大语言模型能力相对完善,落地应用场景丰富,底层技术路线较为成熟;多模态大模型已经能够面向B\C端推出商业化产品,但细节优化空间较大;具身智能类大模型还在探索阶段,技术路线尚不清晰。

  现阶段讨论AGI能力提升仍需聚焦于多模态大模型的训练和应用。目前学界和业界重点关注ScalingLaw的有效性,以及模型算法的可能改进方向。

  ScalingLaw仍有深入空间。根据OpenAI研究,随模型参数量、数据集规模、训练使用的计算量增加,模型性能能够稳步提高,即ScalingLaw。从训练样本效率、训练时长、各类资源对模型的贡献维度来看,目前ScalingLaw仍是提高模型性能的最优方法。OpenAI测算在模型参数量扩展到88万亿及之前,ScalingLaw
计算机行业研究:如何实现AGI:大模型现状及发展路径展望
download

声明:本站所有报告及文章,如无特殊说明或标注,均为本站用户发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。